首页 | 本学科首页   官方微博 | 高级检索  
     


Self-exchange of sodium in human lymphocytes.
Authors:W Negendank and C Shaller
Abstract:Self-exchanges of Na and K in human lymphocytes were measured by isotopic efflux techniques. In washed cells, K exchanged in a single slow exponential fraction, but the Na exchange had a marked curvature. It was shown that the curvature was not caused by simple bulk-phase diffusion, and it was resolved into three major fractions: fast (F) (half-time, t1/2 = 2-4 min), intermediate (I) (t1/2 = 12 min), and slow (S) (t1/2 = 125 min). Each of these appeared to follow an exponential function. The I fraction contained approximately 10 mmol Na/kg cells (25-30% of normal cellular Na), was not affected by manipulations that cause lymphocytes to gain Na, and had little or no temperature dependence. The S fraction of Na in normal cells (S1) contained approximately 10 mmol Na/kg cells, had only a slight temperature dependence, and the amount and rate of S1 were independent of external K concentration (Kex). Another slow fraction (S2) appeared when the cells underwent a net gain of Na in exchange for K, and was characterized by a steep temperature dependence and a peak rate around the transition point (the point at which half of cellular K is replaced by Na) at 0.4 mM Kex. The results are discussed within context of a theory that assigns the exchange of the major part of K in its slow exponential fraction and the Na exchange in S2 to interactions of these ions with fixed anionic sites, on intracellular macromolecules, which have been shown previously to interact cooperatively in their association with K and Na.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号