首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of intestinal apolipoprotein B synthesis and secretion by Caco-2 cells. Lack of fatty acid effects and control by intracellular calcium ion
Authors:T E Hughes  J M Ordovas  E J Schaefer
Affiliation:Lipid Metabolism Laboratory, United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111.
Abstract:To investigate the mechanism of control of intestinal apolipoprotein B (apoB) secretion, we studied the effects of fatty acids and calcium ionophores on the human intestinal model cell line Caco-2. Although treatment with various fatty acids (18:1w9, 18:2w6, and 20:5w3) complexed to bovine serum albumin resulted in a dramatic redistribution of apoB-100 from the low density and high density lipoproteins to the very low density lipoprotein fraction, there was no effect of any of the fatty acids on the overall rate of total apoB (apoB-100 and apoB-48) secretion. Treatment of differentiated monolayers with calcium ionophores A23187 or ionomycin caused dose-specific increases (125% at 1 microM) in the accumulation of total apoB, but not apoA-I, in conditioned medium as measured by specific immunoassays. Incubation studies with 35S-labeled Caco-2 apoB,E-containing low density lipoprotein particles revealed that treatment with ionomycin over a broad concentration range had no effect on the reuptake of secreted apoB-100. The effect on A23187 on total apoB secretion was blocked by prior chelation of medium calcium and was significantly enhanced by the addition of calcium (up to 50 mM) to the medium. The effect of A23187 was significantly blunted by treatment with the calmodulin antagonist trifluoperazine (10 microM). The time course of A23187 action on Caco-2 apoB secretion required at least 6 h to occur. In contrast to the concentration of apoB in the medium, cellular apoB content was not influenced by treatment with ionophore. Pulse-chase experiments demonstrated a significant reduction in the synthesis-secretion interval for apoB-100 and apoB-48 after 24 h of exposure to ionomycin. Neither fatty acid treatment nor stimulation with ionophore affected the ratio of apoB-100 to apoB-48 produced by the cells. These findings with calcium ionophores implicate the involvement of calcium ion in the mechanism of intestinal apoB secretion. A role for calcium-dependent processes in apoB production raises the possibility that, rather than fatty acid flux, calcium-evoked or calcium-dependent hormones may be important regulators of apoB secretion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号