首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A model of unsteady-state transvascular fluid and protein transport in the lung
Authors:R J Roselli  R E Parker  T R Harris
Abstract:Models of steady-state fluid and solute transport in the microcirculation are used primarily to characterize filtration and permeability properties of the transport barrier. Important transient relationships, such as the rate of fluid accumulation in the tissue, cannot be predicted with steady-state models. In this paper we present three simple models of unsteady-state fluid and protein exchange between blood plasma and interstitial fluid. The first treats the interstitium as a homogeneous well-mixed compliant compartment, the second includes an interstitial gel, and the third allows for both gel and free fluid in the interstitium. Because we are primarily interested in lung transvascular exchange we used the multiple-pore model and pore sizes described by Harris and Roselli (J. Appl. Physiol.: Respirat . Environ. Exercise Physiol. 50: 1-14, 1981) to characterize the microvascular barrier. However, the unsteady-state transport theory presented here should apply to other organ systems and can be used with different conceptual models of the blood-lymph barrier. For a step increase in microvascular pressure we found good agreement between theoretical and experimental lymph flow and lymph concentrations in the sheep lung when the following parameter ranges were used: base-line interstitial volume, 150-190 ml; interstitial compliance, 7-10 ml/Torr; initial interstitial fluid pressure, -1 Torr; pressure in initial lymphatics, -5 to -6 Torr; and conductivity of the interstitium and lymphatic barrier, 4.25 X 10(-4) ml X s-1 X Torr-1. Based on these values the model predicts 50% of the total change in interstitial water volume occurs in the first 45 min after a step change in microvascular pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号