首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of cysteine residues in the oxidation of ferritin
Authors:Welch Kevin D  Reilly Christopher A  Aust Steven D
Institution:Biotechnology Center, Utah State University, Logan, UT 84322-4705, USA.
Abstract:We have shown that ferritin is oxidized during iron loading using its own ferroxidase activity and that this oxidation results in its aggregation (Welch et al., Free Radic. Biol. Med. 31:999-1006; 2001). In this study we determined the role of cysteine residues in the oxidation of ferritin. Loading iron into recombinant human ferritin by its own ferroxidase activity decreased its conjugation by a cysteine specific spin label, indicating that cysteine residues were altered during iron loading. Using LC/MS, we demonstrated that tryptic peptides of ferritin that contained cysteine residues were susceptible to modification as a result of iron loading. To assess the role of cysteine residues in the oxidation of ferritin, we used site-directed mutagenesis to engineer variants of human ferritin H chain homomers where the cysteines were substituted with other amino acids. The cysteine at position 90, which is located at the end of the BC-loop, appeared to be critical for the formation of ferritin aggregates during iron loading. We also provide evidence that dityrosine moieties are formed during iron loading into ferritin by its own ferroxidase activity and that the dityrosine formation is dependent upon the oxidation of cysteine residues, especially cysteine 90. In conclusion, cysteine residues play an integral role in the oxidation of ferritin and are essential for the formation of ferritin aggregates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号