首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Photosynthetic performance and growth traits in Pennisetum centrasiaticum exposed to drought and rewatering under different soil nutrient regimes
Authors:Yayong Luo  Xueyong Zhao  Hao Qu  Xiaoan Zuo  Shaokun Wang  Wenda Huang  Yongqing Luo  Min Chen
Institution:1. Department of Ecology and Agriculture, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences, No. 320 Donggang West Road, Lanzhou, 730000, Gansu, China
Abstract:Responses of plants exposed to drought and rewatering have been well documented; however, little is known concerning strategies of psammophyte to drought and rewatering under different soil nutrient regimes. For this study, Pennisetum centrasiaticum under two soil nutrient regimes was subjected to progressive drought and subsequent rewatering. Soil water status, gas exchange characteristics, chlorophyll a fluorescence characteristics as well as biomass traits were measured to investigate ecophysiological responses. Net photosynthesis rate (P n), stomatal conductance (g s), water use efficiency, maximum quantum efficiency of photosynthesis system II (PSII, F V/F M), electron transport flux per cross section (ET0/CS0), and performance index on cross section basis (PICS) were suppressed during drought periods for both nutrient regimes. Meanwhile, leaf intercellular CO2 concentration (C i ), minimal fluorescence intensity (F 0), and dissipated energy flux per cross section (DI0/CS0) increased. Reversible downregulation of PSII photochemistry and enhanced thermal dissipation of excess excitation energy (DI0/CS0) contributed to enhanced photo-protection in drought-stressed plants. Thus, the results indicate that P. centrasiaticum is capable of withstanding and surviving extreme drought events, and the recovery pattern of stressed P. centrasiaticum under both nutrient regimes was similar. However, fertilization increased the biomass and the variation in gas exchange and chlorophyll a fluorescence characteristics during drought periods. Additionally, fertilization accelerated the process of drought and aggravated stress under extreme drought events. Thus, the fertilization strategy used in P. centrasiaticum restoration should be carefully selected—fertilization may not always be beneficial.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号