首页 | 本学科首页   官方微博 | 高级检索  
   检索      

代谢工程改造谷氨酸棒状杆菌合成及分泌途径生产L-缬氨酸
引用本文:张海灵,李颜颜,王小元.代谢工程改造谷氨酸棒状杆菌合成及分泌途径生产L-缬氨酸[J].生物工程学报,2018,34(10):1606-1619.
作者姓名:张海灵  李颜颜  王小元
作者单位:1 江南大学 食品科学与技术国家重点实验室,江苏 无锡 214122;2 江南大学 生物工程学院,江苏 无锡 214122,1 江南大学 食品科学与技术国家重点实验室,江苏 无锡 214122;2 江南大学 生物工程学院,江苏 无锡 214122,1 江南大学 食品科学与技术国家重点实验室,江苏 无锡 214122;2 江南大学 生物工程学院,江苏 无锡 214122
基金项目:国家自然科学基金面上项目 (No. 31370131),江苏省普通高校研究生科研创新计划 (No. CXZZ12-0755) 资助。
摘    要:谷氨酸棒状杆菌是目前微生物发酵生产L-缬氨酸的主要工业菌株。文中首先在谷氨酸棒状杆菌VWB-1中敲除了alaT (丙氨酸氨基转移酶),获得突变菌株VWB-2,作为出发菌株。进而对L-缬氨酸合成途径关键酶——乙酰羟酸合酶 (ilvBN) 的调节亚基进行定点突变 (ilvBN1M13),解除L-缬氨酸对该酶的反馈抑制。然后辅助过量表达L-缬氨酸合成途径关键基因ilvBN1M13、乙酰羟酸异构酶 (ilvC)、二羟酸脱水酶 (ilvD)、支链氨基酸氨基转移酶 (ilvE),加强通往L-缬氨酸的碳代谢流,提高菌株的L-缬氨酸水平。最后,基于过量表达L-缬氨酸转运蛋白编码基因brnFE及其调控蛋白编码基因lrp1,提高细胞的L-缬氨酸转运能力。最终获得工程菌株VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE在5 L发酵罐中的L-缬氨酸产量达到461.4 mmol/L,糖酸转化率达到0.312 g/g葡萄糖。

关 键 词:L-缬氨酸,代谢工程,发酵,谷氨酸棒状杆菌
收稿时间:2018/3/27 0:00:00

Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production
Hailing Zhang,Yanyan Li and Xiaoyuan Wang.Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production[J].Chinese Journal of Biotechnology,2018,34(10):1606-1619.
Authors:Hailing Zhang  Yanyan Li and Xiaoyuan Wang
Institution:1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; 2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China,1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; 2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China and 1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; 2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract:Corynebacterium glutamicum is the main industrial strain to produce L-valine by microbial fermentation. In this study, a low L-alanine producing C. glutamicum strain VWB-2 was constructed by knocking out the alanine aminotransferase encoding gene alaT in a high L-valine producing strain VWB-1. Meanwhile, a site-directed mutagenesis (ilvBN1M13) was done on the regulatory subunit of acetohydroxyacid synthase (ilvBN), a key enzyme in the L-valine synthesis pathway. Furthermore, the overexpression of the genes involved in the biosynthesis of L-valine, the mutated ilvBN1M13, the acetohydroxy acid isomerase coding genes ilvC, the dihydroxy-acid dehydratase coding gene ilvD and branched-chain amino acid aminotransferase coding gene ilvE, could all promote the L-valine production of VWB-1 by strengthening the carbon flow towards L-valine. With the overexpression of the branched chain amino acid transporter coding gene brnFE and its regulator lrp1, the L-valine producing capability of VWB-1 was further enhanced. The finally obtained engineered strain VWB-2/pEC-XK99E-ilvBN1M13CE-lrp1-brnFE could produce 461.4 mmol/L L-valine in a 5 L fermentor with a sugar acid conversion rate of 0.312 g/g glucose.
Keywords:L-valine  metabolic engineering  fermentation  Corynebacterium glutamicum
点击此处可从《生物工程学报》浏览原始摘要信息
点击此处可从《生物工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号