首页 | 本学科首页   官方微博 | 高级检索  
     


A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues
Authors:Olberding Joseph E  Francis Suh J-K
Affiliation:Department of Biomedical Engineering, Tulane University, Lindy Boggs Center, Suite 500, New Orleans, LA 70118, USA.
Abstract:A dual-indentation creep and stress relaxation methodology was developed and validated for the material characterization of very soft biological tissue within the framework of the biphasic poroviscoelastic (BPVE) constitutive model. Agarose hydrogel, a generic porous medium with mobile fluid, served as a mechanical tissue analogue for validation of the experimental procedure. Indentation creep and stress relaxation tests with a solid plane-ended cylindrical indenter were performed at identical sites on a gel sample with dimensions large enough with respect to indenter size in order to satisfy an infinite layer assumption. A finite element (FE) formulation coupled to a global optimization algorithm was utilized to simultaneously curve-fit the creep and stress relaxation data and extract the BPVE model parameters for the agarose gel. A numerical analysis with artificial data was conducted to validate the uniqueness of the computational procedure. The BPVE model was able to successfully cross-predict both creep and stress relaxation behavior for each pair of experiments with a single unique set of material parameters. Optimized elastic moduli were consistent with those reported in the literature for agarose gel. With the incorporation of appropriately-sized indenters to satisfy more stringent geometric constraints, this simple yet powerful indentation methodology can provide a straightforward means by which to obtain the BPVE model parameters of biological soft tissues that are difficult to manipulate (such as brain and adipose) while maintaining a realistic in situ loading environment.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号