Abstract: | Polarographic studies on oxidation-reduction components bound with chromatophores from Rhodospirillum rubrum were carried out at 24 degrees. 1. Using a carbon-paste electrode as the working electrode, polarographic waves characteristic of oxidation-reduction components were observed in the presence, but not in the absence of Triton X-100; these waves were therefore measured in the presence of the detergent. 2. At least two kinds of oxidation-reduction components were detectable, having different half-wave potentials (E1/2); at pH 7, one had an E1/2 value of +275 mV (POC+275) and the other had a value of +60 mV (POC+60). 3. POC+275 was reduced by succinate and by NADH. Both reductions were almost completely inhibited by antimycin A, which hardly affected the reductions of ubiquinone-10 by succinate and by NADH. Most POC+275 molecules were not reduced by the substrates when quinones were extracted from the chromatophores, and the reductions were mostly restored when ubiquinone-10 was re-added. This indicates that POC+275 is functional between ubiquinone-10 and cytochrome c2 in the electron transport system. 4. POC+60 was reduced by succinate, but hardly at all by NADH. The reduction of POC+60 was not influenced either by the addition of antimycin A or by the extraction of quinones. This suggests that POC+60 is functional in the process from succinate dehydrogenase [EC 1.3.99.1] to ubiquinone-10 in the electron transport system. 5. Of the POC+275 reducible by dithionite, approximately 70% could be reduced in the absence of Triton X-100, provided that the potential of the working electrode immersed in chromatophore suspensions was set at potentials of 0 mV or lower and that the electrochemical reaction was carried out at pH 7.5. When the potential of the electrode was set at +50 mV (the same as the E1/2 value of ubiquinone-10 bound with chromatophores), and the suspension was allowed to stand for various lengths in the presence of the detergent, it was found that approximately half of the electrochemically reducible POC+275 was rapidly reduced, followed by a slow reduction. The discrepancy in the oxidation-reduction equilibrium on the basis of the E1/2 values of ubiquinone-10 and POC+275 is discussed. |