首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microbial degradation of lignin
Authors:Don L Crawford  Ronald L Crawford
Institution:Department of Bacteriology and Biochemistry, Idaho Agriculture Experiment Station, University of Idaho. Moscow, Idaho 83843, USA;Gray Freshwater Biological Institute, Department of Microbiology, University of Minnesota, P.O. Box 100, Navarre, Minnesota 55392, USA
Abstract:The transformations of lignin that occur during its biodegradation are complex and incompletely understood. Certain fungi of the white-rot group, and possibly other fungi and bacteria, completely decompose lignin to carbon dioxide and water. Other fungi and bacteria apparently degrade lignin incompletely. Differences in lignin-degrading abilities observed for different organisms may result from differences in the completeness of their ligninolytic enzyme systems. Not all lignin components may be attacked by a particular organism. Alternatively, different organisms may differ in their basic mechanisms of attack on lignin. The basic pathways of lignin degradation have been elucidated only for certain representatives of the white-and brown-rot fungi. Although it is known that each of the principal structural components of lignin is attacked by other fungi and bacteria, the biochemistry of that attack has not been elucidated. Work with low molecular weight lignin models has provided only limited information on possible pathways of lignin degradation by microorganisms. There is little evidence to suggest a correlation between abilities to degrade single-ring aromatic or lignin model compounds and the ability to degrade polymeric lignin. More evidence has come from analysis of spent culture media for lignin breakdown products and from comparative chemical analyses of sound lignins versus decayed lignin residues. Accumulated evidence with the most thoroughly studied white-rot fungi suggests that with these fungi lignin degradation proceeds by way of extracellular mixed-function oxygenases and dioxygenases, which catalyse demethylations, hydroxylations and ring-fission reactions within a largely intact polymer, concomitant with some release of low molecular weight lignin fragments. There are also apparent relationships between lignin, carbohydrate and nitrogen metabolism for some organisms, but the relationships may vary from one organism to another. Although research is now mostly at a basic level, industrial applications may result from lignin degradation research. Considerable potential exists for the development of bioconversions which might produce low molecular weight chemicals from waste lignins, and thereby reduce our dependence on petroleum as a source of these chemicals. Alternatively, such bioconversions might produce chemically altered forms of polymeric lignin that may be valuable industrially.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号