首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Alteration of the protein kinase binding domain enhances function of the Saccharomyces cerevisiae molecular chaperone Cdc37
Authors:Ren Min  Santhanam Arti  Lee Paul  Caplan Avrom  Garrett Stephen
Institution:Graduate School of Biomedical Sciences, Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren St., Newark, NJ 07101, USA.
Abstract:Cdc37 is a molecular chaperone that has a general function in the biogenesis of protein kinases. We identified mutations within the putative "protein kinase binding domain" of Cdc37 that alleviate the conditional growth defect of a strain containing a temperature-sensitive allele, tpk2(Ts), of the cyclic AMP-dependent protein kinase (PKA). These dominant mutations alleviate the temperature-sensitive growth defect by elevating PKA activity, as judged by their effects on PKA-regulated processes, localization and phosphorylation of the PKA effector Msn2, as well as in vitro PKA activity. Although the tpk2(Ts) growth defect is also alleviated by Cdc37 overproduction, the CDC37 dominant mutants contain wild-type Cdc37 protein levels. In addition, Saccharomyces cerevisiae Ste11 protein kinase has an elevated physical interaction with the altered Cdc37 protein. These results implicate specific amino-terminal residues in the interaction between Cdc37 and client protein kinases and provide further genetic and biochemical support for a model in which Cdc37 functions as a molecular chaperone for protein kinases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号