首页 | 本学科首页   官方微博 | 高级检索  
   检索      

无水分胁迫下行作物蒸发散与双涌源能量分配和交换关系
引用本文:于婵,朝伦巴根,高瑞忠,柴建华.无水分胁迫下行作物蒸发散与双涌源能量分配和交换关系[J].应用生态学报,2006,17(5):839-844.
作者姓名:于婵  朝伦巴根  高瑞忠  柴建华
作者单位:1.内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018;2.内蒙古水利科学研究院,呼和浩特 010020
基金项目:国家高技术研究发展计划(863计划)
摘    要:以内蒙古浑善达克沙地人工草地种植的行作物——青贮玉米为研究对象,将FAO-56的双作物系数法与双涌源能量平衡模型相结合,计算了太阳入射能量按叶面积指数(LAI)分配到两个涌源(冠层、土壤表面)的有效能量Ac和As、潜热通量λEc和λEs以及显热通量Hc和Hs.分析两个涌源在有效能量驱使下的潜热和显热通量相互作用.结果表明,1)在无水分胁迫条件下,冠层Hc与λEc相互作用使冠层吸收微热平流,强化蒸腾作用,加大蒸腾量.蒸腾(以潜热通量表示)超过冠层有效能量的增量(λEci-Aci).最大值出现在生长发育阶段LAI为0.6的7月15日到LAI为2.4 的8月9日之间,其平均值为4.32 MJ·m-2·d-1.2)无水分胁迫情况下,λEs和Hs相互作用,除强湿润过程后的1~2 d外,其他各天土壤均以低于土壤表面有效能量的速率蒸发.蒸发强度取决于土壤表面有效能量消散为土壤潜热通量的百分比,这个百分比最小值出现在生长中期阶段,其平均值为11.5%;最大值出现在生长初始阶段,其平均值为51.9%.3)两个涌源潜热通量是蒸散过程中能量交换的主要成分,在生长发育、中期、后期阶段转换为两个涌源潜热通量的有效能量均占总能量的83%以上.

关 键 词:混合稀土  作物  相对出苗率  LC50  
文章编号:1001-9332(2006)05-0839-06
收稿时间:2005-05-24
修稿时间:2006-03-09

Relationships between row crop evapotranspiration and two sources-energy partition and exchange under non-water stress condition
YU Chan,Chaolunbagen,GAO Ruizhong,CHAI Jianhua.Relationships between row crop evapotranspiration and two sources-energy partition and exchange under non-water stress condition[J].Chinese Journal of Applied Ecology,2006,17(5):839-844.
Authors:YU Chan  Chaolunbagen  GAO Ruizhong  CHAI Jianhua
Institution:1.College of Hydraulic and Civil Engineering,Inner Mongolia Agricultural University,Huhhot 010018,China;2.Institute of Inner Mongolia Water Resources,Huhhot 010020,China
Abstract:With the maize harvested for green fodder and grown at the Hunshandake sand area as test row crop,and by combining two sources- energy balance model with dual crop coefficient approach presented in FAO-56,this paper estimated the available energy partitioned into two sources, canopy and soil surface (Ac and As), and the latent and sensible heat fluxes, lambdaEc, lambdaEs, Hc and Hs. The results showed that under non-water stress condition, the interaction between Hc and lambdaEc made canopy absorbed a micro-advection to enhance transpiration expressed by latent heat flux,with the value of (lambdaE(i)c-A(i)c). The greatest enhancement of transpiration occurred at the crop development stage with leaf area index between 0.6 and 2.4, and the average of the enhancement was 4.32 MJ x m(-2) x d(-1). Soil evaporation was in progress with a rate below the available energy of soil, due to the interaction between Hc and lambdaEc under non-water stress condition, except a few days immediately after heavy rain. The evaporation rate depended on the percentage of soil available energy dissipated as latent heat flux. The average value of minimum percentage, 11.5%, occurred at mid-season stage,while that of maximum percentages,51.9%, occurred at initial stage. Latent heat fluxes were the important components of energy exchange during the process of evapotranspiration. The available energy dissipated as latent heat fluxes of the two sources during crop development, mid-season, and late season stages accounted for over 83% of the total energy.
Keywords:Leaf area index  Energy partition and exchange  Crop evapotranspiration  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号