首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium homeostasis in trigeminal ganglion cell bodies
Authors:Gover Tony D  Moreira Thaís H V  Kao Joseph P Y  Weinreich Daniel
Institution:The Neuroscience Program, University of Maryland, School of Medicine, Baltimore, MD 21201-1559, United States.
Abstract:In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root ganglia and nodose ganglia neuron cell bodies. Little is known about Ca2+ homeostasis in trigeminal ganglion neurons (TGNs). To determine what cellular processes contribute to electrically-evoked Ca2+ transients in TGNs, we probed Ca2+ regulatory mechanisms in TGN cell bodies from the ophthalmic division with a panel of pharmacological reagents. Ca2+ transients were evoked in fura-2 loaded TGNs by depolarizing the plasma membrane with brief (500 ms) puffs of 50 mM KCl. Cyclopiazonic acid (CPA; 5 microM), an inhibitor of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), significantly decreased the peak amplitude, and slowed the decay, of the KCl-evoked Ca2+ transients in TGNs. The mitochondrial protonophore, carbonyl cyanide 3-chloro-phenylhydrazone (CCCP; 5 microM) significantly increased the peak amplitude of KCl-evoked Ca2+ transients. These data demonstrate that Ca2+ stores do play a major role in Ca2+ homeostasis in TGN cell bodies. To determine the role of the sodium-calcium exchanger (NCX) in KCl-evoked Ca2+ transients in TGNs, we inhibited the exchanger with KB-R7943 (10 microM), or by replacing Na+ with Li+. NCX inhibition did not affect either the peak amplitude or the decay kinetics of the KCl-evoked Ca2+ transients. Therefore, the NCX does not play a significant role in removing cytosolic Ca2+ from TGNs. To test whether the plasma membrane calcium-ATPase (PMCA) contributes to Ca2+ extrusion, we inhibited its activity by a shift to alkaline pH (9.0). At pH 9.0, both the peak amplitude and decay time of the KCl-evoked Ca2+ transient were increased significantly. These data suggest that, in TGNs, the PMCA is the major mechanism for removing cytosolic Ca2+ following electrical activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号