首页 | 本学科首页   官方微博 | 高级检索  
     


Fiber type populations and Ca2+-activation properties of single fibers in soleus muscles from SHR and WKY rats
Authors:Bortolotto, Susan K.   Stephenson, D. George   Stephenson, Gabriela M.M.
Abstract:Electrophoretic analyses of muscle proteins in whole musclehomogenates and single muscle fiber segments were used to examine myosin heavy chain (MHC) and myosin light chain 2 (MLC2) isoform composition and fiber type populations in soleus muscles from spontaneously hypertensive rats (SHRs) and their age-matchednormotensive controls [Wistar-Kyoto (WKY) rats], at threestages in the development of high blood pressure (4 wk, 16 wk, and 24 wk of age). Demembranated (chemically skinned with 2% Triton X-100),single fiber preparations were used to determine the maximumCa2+-activated force percross-sectional area, calcium sensitivity, and degree of cooperativityof the contractile apparatus andCa2+-regulatory system withrespect to Ca2+. The results showthat, at all ages examined, 1) SHRsoleus contained a lower proportion of MHCI and MLC2 slow (MLC2s) and ahigher proportion of MHCIIa, MHCIId/x, and MLC2 fast (MLC2f )isoforms than the age-matched controls;2) random dissection of single fibers from SHR and WKY soleus produced four populations of fibers: type I (expressing MHCI), type IIA (expressing MHCIIa), hybrid typeI+IIA (coexpressing MHCI and MHCIIa), and hybrid type IIA+IID (coexpressing MHCIIa and MHCIId/x); and3) single fiber dissection from SHRsoleus yielded a lower proportion of type I fibers, a higher proportionof fast-twitch fibers (types IIA and IIA+IID), and a higher proportionof hybrid fibers (types I+IIA and IIA+IID) than the homologous musclesfrom the age-matched WKY rats. Because the presence of hybrid fibers isviewed as a marker of muscle transformation, these data suggest thatSHR soleus undergoes transformation well into adulthood. Our data showalso that, for a given fiber type, there are no significant differencesbetween SHR and WKY soleus muscles with respect to any of theCa2+-activation propertiesexamined. This finding indicates that the lower specific tensionsreported in the literature for SHR soleus muscles are not due tostrain- or hypertension-related differences in the function of thecontractile apparatus or regulatory system.
Keywords:
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号