首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mathematical Model of a Countercurrent Flow Multi-fibre Dialyser
Authors:N W Loney  C R Huang  L Simon
Institution:(1) Department of Chemical Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Blvd., Newark, NJ 07102, USA
Abstract:Summary The closed form solution to a distributed parameter mathematical model of a countercurrent flow dialyser is presented. The model consisting of a bundle of hollow fibres in a shell accounts for axial convection and radial diffusion. The proposed model relates the fractional removal of a solute to mass transfer parameters such as Sherwood number, length Peclet number and system geometry. Excellent agreement with experimental beer dialysis data is demonstrated for the removal of alcohol using 8-lm thick 200-lm diameter cuprophane hollow-fibre membrane fibres. Potentially, this model could be very helpful in designing new processes involving dialysis. For example, removal efficiency better than 90% is achievable in systems operating with a Sherwood number of 2.0, length Peclet number of 5 · 105, unit tube-side/shell-side volumetric flow and length-to-diameter ratio of 5000. Results were obtained in this work from only the first eigenvalue and the case of no solute in the incoming dialysate stream.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号