Molecular approaches for identification and construction of novel insecticidal genes for crop protection |
| |
Authors: | Sarvjeet Kaur |
| |
Affiliation: | (1) National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, 110012 New Delhi, India |
| |
Abstract: | Summary The insecticidal cry (crystal) genes from Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. Discovery of new insecticidal genes is of importance for delaying the development of resistance in target insects. The diversity of Bt strains facilitates isolation of new types of cry and vip (vegetative insecticidal protein) genes. PCR is a useful technique for quick and simultaneous screening of Bt strains for classification and prediction of insecticidal activities. PCR together with other methods of analysis such as RFLP, gene sequence determination, electrophoretic, immunological and chromatographic analysis of Cry proteins and insect bioassays for evaluation of toxicity have been employed for identification of new insecticidal proteins. Some other new approaches have also been devised. Many Bt strains with novel insecticidal genes have been found. A desired combination of Cry proteins can be assembled via site-specific recombination vectors into a recipient Bt strain to create a genetically improved biopesticide. For better pest control, the cry genes have been transferred to plants. Stacking of more than one insecticidal gene is required for resistance management in transgenic crops. Modification of Cry proteins through protein engineering for increasing the toxicity and/or the insecticidal spectrum is also a promising approach, but requires detailed understanding of the structure and function of these proteins and analysis of toxin-receptor interactions. More research into this area will provide useful insights for the design of toxins for management of insect resistance. Insecticidal genes from other bacteria and plants are also being examined for their potential for deployment in transgenic crops. Stringent implementation of resistance management is needed for maintaining the efficacy of Bt transgenic crops and deriving maximum economic and environmental benefit. |
| |
Keywords: | B acillus thuringiensis cry genes novel insecticidal genes PCR protease inhibitor transgenic plants |
本文献已被 SpringerLink 等数据库收录! |
|