首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The group A Streptococcus accessory protein RocA: regulatory activity,interacting partners and influence on disease potential
Authors:Ira Jain  Jessica L Danger  Cameron Burgess  Timsy Uppal  Paul Sumby
Institution:Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
Abstract:The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain- and serotype-specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two-component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease-encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild-type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain- and serotype-specific variability in RocA function.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号