首页 | 本学科首页   官方微博 | 高级检索  
     


Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress
Authors:Cengiz Kaya  Muhammad Ashraf  Mohammed Nasser Alyemeni  Parvaiz Ahmad
Affiliation:1. Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey;2. Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan;3. Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
Abstract:We conducted a study to evaluate the interactive effect of NO and H2S on the cadmium (Cd) tolerance of wheat. Cadmium stress considerably reduced total dry weight, chlorophyll a and b content and ratio of Fv/Fm by 36.7, 48.6, 26.7 and 19.5%, respectively, but significantly enhanced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA), endogenous H2S and NO, and the activities of antioxidant enzymes. Exogenously applied sodium nitroprusside (SNP) and sodium hydrosulfide (NaHS), donors of NO and H2S, respectively, enhanced total plant dry matter by 47.8 and 39.1%, chlorophyll a by 92.3 and 61.5%, chlorophyll b content by 29.1 and 27.2%, Fv/Fm ratio by 19.7 and 15.2%, respectively, and the activities of antioxidant enzymes, but lowered oxidative stress and proline content in Cd-stressed wheat plants. NaHS and SNP also considerably limited both the uptake and translocation of Cd, thereby improving the levels of some key mineral nutrients in the plants. Enhanced levels of NO and H2S induced by NaHS were reversed by hypotuarine application, but they were substantially reduced almost to 50% by cPTIO (a NO scavenger) application. Hypotuarine was not effective, but cPTIO was highly effective in reducing the levels of NO and H2S produced by SNP in the roots of Cd-stressed plants. The results showed that interactive effect of NO and H2S can considerably improve plant resistance against Cd toxicity by reducing oxidative stress and uptake of Cd in plants as well as by enhancing antioxidative defence system and uptake of some essential mineral nutrients.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号