首页 | 本学科首页   官方微博 | 高级检索  
     


Sex-specific effects of hybridization on reproductive fitness in Mytilus
Authors:Ellen L. Kenchington  Barry W. MacDonald  Andrew Cogswell  Lorraine C. Hamilton  Angel P. Diz
Affiliation:1. Ocean and Ecosystem Sciences Division, Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada;2. Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
Abstract:Blue mussels of the genus Mytilus form extensive hybrid zones in the North Atlantic and elsewhere where the distributions of different species overlap. Mytilus species transmit both maternal and paternal mtDNA through egg and sperm, respectively, a process known as doubly uniparental inheritance (DUI), and some females produce offspring with extremely biased sex ratios. These two traits have been shown to be linked and maternally controlled, with sex determination involving nuclear–cytoplasmic interactions. Hybridization has been shown to disrupt DUI mitochondrial inheritance and sex ratio bias; however, the effect of hybridization on reproductive fitness has not previously been examined. We investigated this effect in M. edulis × M. trossulus crosses through histological examination of mature F1 progeny, and spawning of F1 hybrids to monitor survival of their progeny through to the D stage of larval development. For progeny produced from mothers with a strong bias toward female offspring (often 100%) in pure-bred crosses, there was a clear breakdown in female dominance of progeny and significantly more hermaphrodites in the hybrid crosses produced from sperm with the M-tr1 mitotype. We also found significant sex-specific differences among hybrid progeny, with females producing normal eggs while males and hermaphrodites evidenced impaired gonadal development with significantly greater numbers of Sertoli cells, phagocytic hemocytes, and degenerating germ cells, all associated with gonad resorption. Males from crosses where DUI was disrupted and where male progeny were homoplasmic for the female mtDNA were the most severely compromised. Allelic incongruity between maternal and paternal mitotypes in hybrid crosses was associated with significant disruption of male gonadal development.
Keywords:doubly uniparental inheritance  mtDNA  Mytilus  reproductive fitness  sex ratio bias
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号