首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit
Authors:Taylor Michael  Banerjee Tuhina  Ray Supriyo  Tatulian Suren A  Teter Ken
Institution:Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826, USA.
Abstract:Protein-disulfide isomerase (PDI) has been proposed to exhibit an "unfoldase" activity against the catalytic A1 subunit of cholera toxin (CT). Unfolding of the CTA1 subunit is thought to displace it from the CT holotoxin and to prepare it for translocation to the cytosol. To date, the unfoldase activity of PDI has not been demonstrated for any substrate other than CTA1. An alternative explanation for the putative unfoldase activity of PDI has been suggested by recent structural studies demonstrating that CTA1 will unfold spontaneously upon its separation from the holotoxin at physiological temperature. Thus, PDI may simply dislodge CTA1 from the CT holotoxin without unfolding the CTA1 subunit. To evaluate the role of PDI in CT disassembly and CTA1 unfolding, we utilized a real-time assay to monitor the PDI-mediated separation of CTA1 from the CT holotoxin and directly examined the impact of PDI binding on CTA1 structure by isotope-edited Fourier transform infrared spectroscopy. Our collective data demonstrate that PDI is required for disassembly of the CT holotoxin but does not unfold the CTA1 subunit, thus uncovering a new mechanism for CTA1 dissociation from its holotoxin.
Keywords:Cholera Toxin  Endoplasmic Reticulum(ER)  Fourier Transform IR (FTIR)  Protein Conformation  Protein Folding  Protein Isomerase  Protein Stability  Protein Translocation  Surface Plasmon Resonance (SPR)
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号