首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elucidation of a [4Fe-4S] cluster degradation pathway: rapid kinetic studies of the degradation of Chromatium vinosum HiPIP
Authors:Matthew W Foster  Shumin Bian  Kristene K Surerus  JA Cowan
Institution:Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
Abstract:Irreversible disassembly of the 4Fe-4S cluster in Chromatium vinosum high-potential iron protein (HiPIP) has been investigated in the presence of a low concentration of guanidinium hydrochloride. From the dependence of degradation rate on H+], it is deduced that at least three protons are required to trigger efficient cluster degradation. Under these conditions the protonated cluster shows broadened M?ssbauer signals, but delta EQ (1.1 mm/s) and delta (0.44 mm/s) are similar to the native form. Collapse of the protonated transition state complex, revealed by rapid-quench M?ssbauer experiments, occurs with a measured rate constant kobs approximately 0.72 +/- 0.35 s-1 that is consistent with results from time-resolved electronic absorption and fluorescence (kobs approximately 0.4 +/- 0.1 s-1) and EPR (kobs approximately 0.62 +/- 0.18 s-1) measurements. Apparently, guanidinium hydrochloride serves to perturb the tertiary structure of the protein, facilitating protonation of the cluster, but not degradation per se. Release of iron ions occurs even more slowly with kobs approximately 0.07 +/- 0.02 s-1, as determined by the appearance of the g = 4.3 EPR signal. Proton-mediated cluster degradation is sensitive to the oxidation state of the cluster, with the oxidized state showing a two-fold slower rate in acidic solutions as a result of increased electrostatic repulsion with the cluster. Consistent results are obtained from absorption, fluorescence, M?ssbauer and EPR measurements.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号