首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphological plasticity in scleractinian corals
Authors:Todd Peter A
Institution:Marine Biology Laboratory, Department of Biological Sciences, National University of Singapore,;14 Science Drive 4, Blk S1, 02-05, Singapore 117543 (E-mail: )
Abstract:When describing coral shape and form the term phenotypic plasticity, i.e. environment-induced changes in morphology, is often used synonymously with intraspecific variation. Variation, however, may simply be due to genetic differentiation (polymorphism). Of the 1314 extant scleractinian coral species, less than 20 have been tested for plastic responses. Morphological plasticity has important implications for coral identification, as skeletal features used in coral systematics are directly affected by environment. Furthermore, plastic changes can indicate how corals acclimatise to environmental change. The studies that have examined phenotypic plasticity in corals experimentally can be divided into two groups, i.e. 'non-clonal'—those that have transplanted whole colonies or fragments of colonies (but not treated the fragments as clones) to new environments, and 'clonal'—those that have transplanted colony fragments and used them as clone-mates. The use of clone-mates is preferable as it facilitates the identification of among-genotype variation for plasticity. The heterogeneous nature of the reef environment makes identifying the parameters that affect coral morphology difficult in the field, but there are also many problems conducting suitable aquarium experiments. Nevertheless, evidence to date suggests light and water movement are the most important variables inducing change. As these factors are known to be axiomatic to coral growth, it is possible that associated plastic changes in corals are adaptive; however, this hypothesis is yet to be tested rigorously.
Keywords:scleractinian corals  phenotypic plasticity  genotype × environment interactions  intraspecific variation  induced changes  adaptive  morphology  growth  light  water movement
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号