首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina.
Authors:Gergely Maróti  Barna D Fodor  Gábor Rákhely  Akos T Kovács  Solmaz Arvani  Kornél L Kovács
Institution:Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Hungary.
Abstract:There are at least two membrane-bound (HynSL and HupSL) and one soluble (HoxEFUYH) NiFe] hydrogenases in Thiocapsa roseopersicina BBS, a purple sulfur photosynthetic bacterium. Genes coding for accessory proteins that participate in the biosynthesis and maturation of hydrogenases seem to be scattered along the chromosome. Transposon-based mutagenesis was used to locate the hydrogenase accessory genes. Molecular analysis of strains showing mutant phenotypes led to the identification of hupK (hoxV ), hypC1, hypC2, hypD, hypE, and hynD genes. The roles of hynD, hupK and the two hypC genes were investigated in detail. The putative HynD was found to be a hydrogenase-specific endoprotease type protein, participating in the maturation of the HynSL enzyme. HupK plays an important role in the formation of the functionally active membrane-bound NiFe] hydrogenases, but not in the biosynthesis of the soluble enzyme. In-frame deletion mutagenesis showed that HypC proteins were not specific for the maturation of either hydrogenase enzyme. The lack of either HypC protein drastically reduced the activity of every hydrogenase. Hence both HypCs might participate in the maturation of NiFe] hydrogenases. Homologous complementation with the appropriate genes substantiated the physiological roles of the corresponding gene products in the H2 metabolism of T. roseopersicina.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号