首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China
Authors:Yuchun Yan  Xiaoping Xin  Xingliang Xu  Xu Wang  Guixia Yang  Ruirui Yan  Baorui Chen
Affiliation:1. Department of Grassland Sciences, Hulunber State Station of Grassland Ecosystem Field Observation and Scientific Research, Beijing, China
2. Ministry of Agriculture, Key Lab of Resources Remote Sensing and Digital Agriculture, Beijing, People’s Republic of China
3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
4. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
Abstract:Many studies reported the influence of wind erosion on soil degradation and the effect of vegetation coverage on preventing wind erosion. However, fewer studies have quantitatively measured the grassland soil particle size fractions and nutrients’ loss caused by wind erosion under different vegetation coverage. Aims: We conducted a field experiments to (1) to explore the effect of vegetation coverage on soil wind erosion; (2) examine quantitatively the effects of wind erosion on soil texture, and determine the most erodible particles fraction of soil; (3) to examine quantitatively the soil carbon, nutrients such as nitrogen and phosphorus loss caused by wind erosion under different vegetation coverage. Methods: Six vegetation coverage treatments (0 %, 15 %, 35 %, 55 %, 75 % and 95 %) were constructed. To be able to monitor wind erosion status under more diverse weather conditions, three consecutive repeat experiments under different weather condition were conducted. Results: The results show that all the residue soil samples after wind erosion became coarser than that of original soil samples. The degree of change for the soil particle size distribution before and after wind erosion gradually increased with the less of vegetation coverage. The critical particle size for distinguishing the original soil sample and the residue soil after wind erosion occurred in the range of 125 μm and 210 μm depending on the vegetation cover. The fractions below or above the critical particle size are either easy to deplete or favoured by wind erosion, respectively. The most reduction occurs between 50 and 90 μm depending on the different weather condition and vegetation coverage. Due to the disproportionately greater amounts of nutrients in the fine soil particles, the preferential depletion of fine particles directly lead to a preferentially significant depletion of organic carbon and nutrients. The organic carbon and nutrient contents in the residue soil after erosion decreased significantly compared to that in the original soil. The soil nutrient loss ratio decrease significantly with the increase of vegetation coverage. Conclusions: Wind erosion is an important factor to affect the evolution of soil texture and soil nutrient. Vegetation coverage has a major impact on both preventing wind erosion and decreasing loss ratio of fine particles and nutrients. If we want to effectively protect the fine particles and nutrients, the vegetation cover should be maintained at least above 35 %.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号