首页 | 本学科首页   官方微博 | 高级检索  
     


Usefulness of different groups of bacteriophages as model micro-organisms for evaluating chlorination
Authors:Durán A E  Muniesa M  Mocé-Llivina L  Campos C  Jofre J  Lucena F
Affiliation:Department of Microbiology, University of Barcelona, Barcelona, Spain.
Abstract:AIMS: To assess the usefulness of bacterial and viral indicators in chlorination processes and to collect quantitative information necessary for risk assessment analysis in water disinfection processes based on chlorination. METHODS AND RESULTS: Naturally occurring bacterial indicators, bacteriophages and enteroviruses were determined to evaluate the effect of chlorination in groundwater and secondary sewage effluents. Additionally, the effect of chlorinating on selected bacteriophages, enteroviruses and Escherichia coli was also tested in spiked samples of bottled water and sewage effluents. Results indicate that chlorination inactivates more efficiently bacteria than phages and enteroviruses. Among the human viruses, phages infecting Bacteroides fragilis and selected somatic coliphages belonging to the Siphoviridae family were the most persistent to chlorination. CONCLUSIONS: The three groups of bacteriophages studied were all more resistant to chlorination than bacteria and some of the phages were more resistant than enteroviruses. Results presented here indicate that it is very risky to generalize from information obtained with inactivation experiments done with single isolates of any phage or virus. If possible, inactivation studies should be done with naturally occurring populations. Phages offer a good opportunity for studying naturally occurring populations. Thus, the bacteriophages offer a range of resistance to chlorination that may represent most of the viruses that can be found in water. SIGNIFICANCE AND IMPACT OF THE STUDY: Data reported in this study support the inclusion of bacteriophages as additional indicators of the efficiency of water chlorination processes and water quality.
Keywords:Bacteriophages    chlorination    coliphages    environment    inactivation    indicators
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号