首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and stability of genetic variance–covariance matrices: A Bayesian sparse factor analysis of transcriptional variation in the three‐spined stickleback
Authors:J. Siren  O. Ovaskainen  J. Merilä
Affiliation:1. Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland;2. Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway;3. Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
Abstract:The genetic variance–covariance matrix ( G ) is a quantity of central importance in evolutionary biology due to its influence on the rate and direction of multivariate evolution. However, the predictive power of empirically estimated G ‐matrices is limited for two reasons. First, phenotypes are high‐dimensional, whereas traditional statistical methods are tuned to estimate and analyse low‐dimensional matrices. Second, the stability of G to environmental effects and over time remains poorly understood. Using Bayesian sparse factor analysis (BSFG) designed to estimate high‐dimensional G ‐matrices, we analysed levels variation and covariation in 10,527 expressed genes in a large (n = 563) half‐sib breeding design of three‐spined sticklebacks subject to two temperature treatments. We found significant differences in the structure of G between the treatments: heritabilities and evolvabilities were higher in the warm than in the low‐temperature treatment, suggesting more and faster opportunity to evolve in warm (stressful) conditions. Furthermore, comparison of G and its phenotypic equivalent P revealed the latter is a poor substitute of the former. Most strikingly, the results suggest that the expected impact of G on evolvability—as well as the similarity among G ‐matrices—may depend strongly on the number of traits included into analyses. In our results, the inclusion of only few traits in the analyses leads to underestimation in the differences between the G ‐matrices and their predicted impacts on evolution. While the results highlight the challenges involved in estimating G , they also illustrate that by enabling the estimation of large G ‐matrices, the BSFG method can improve predicted evolutionary responses to selection.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号