首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor
Authors:Jenkins J L  Lee M K  Valaitis A P  Curtiss A  Dean D H
Institution:Department of Molecular Genetics and Department of Biochemistry, Ohio State University, Columbus, Ohio 43210, USA.
Abstract:Specificity for target insects of Bacillus thuringiensis insecticidal Cry toxins is largely determined by toxin affinity for insect midgut receptors. The mode of binding for one such toxin-receptor complex was investigated by extensive toxin mutagenesis, followed by real-time receptor binding analysis using an optical biosensor (BIAcore). Wild-type Cry1Ac, a three-domain, lepidopteran-specific toxin, bound purified gypsy moth (Lymantria dispar) aminopeptidase N (APN) biphasically. Site 1 displayed fast association and dissociation kinetics, while site 2 possessed slower kinetics, yet tighter affinity. We empirically determined that two Cry1Ac surface regions are involved in in vivo toxicity and APN binding. Mutations within domain III affected binding rates to APN site 1, whereas mutations in domain II affected binding rates to APN site 2. Furthermore, domain III contact is completely inhibited in the presence of N-acetylgalactosamine, indicating loss of domain III binding eliminates all APN binding. Based upon these observations, the following model is proposed. A cavity in lectin-like domain III initiates docking through recognition of an N-acetylgalactosamine moiety on L. dispar APN. Following primary docking, a higher affinity domain II binding mechanism occurs, which is critical for insecticidal activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号