首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterotypic and homotypic cellular interactions influencing the growth and differentiation of bipotential oligodendrocyte-type-2 astrocyte progenitors in culture
Authors:C Agresti  F Aloisi  G Levi
Institution:Neurobiology Section, Istituto Superiore di Sanità, Italy.
Abstract:Cell populations highly enriched in oligodendrocyte-type-2 astrocyte (O-2A) progenitors (so defined by their ability to bind the monoclonal antibodies LB1 and O4, and by the lack of expression of the differentiated glial markers galactocerebroside and glial fibrillary acidic protein (GFAP) were obtained from rat mixed cortical glial cultures. The O-2A progenitors were grown at low density (2 X 10(4) cells/cm2) in BME + 10% fetal calf serum (FCS) on a poly-L-lysine (PLL) substrate (controls) or on a substrate of purified type-1 astrocytes (AS) killed by air drying (K-AS), in order to analyze the effects of the interaction between the two cell types on the growth and differentiation of the immature O-2A cells, independently of the mitogenic soluble factors (e.g., platelet-derived growth factor; see Raff, 1989, Science 243, 1450-1455) secreted by type-1 AS. While on PLL most of the progenitors differentiated into GFAP+ type-2 AS within 1 week, on K-AS they largely differentiated into GalC+ oligodendrocytes (OL). On the latter substrate, however, the precursors achieved a higher density, due to higher proliferative activity. The additional observation, that when immature O-2A cells were seeded at high density (greater than 5 X 10(4) cells/cm2) on PLL their differentiation into OL was much more pronounced than in cultures of lower density, indicates that there is a close correlation between the density of immature O-2A cells and lineage decision, and that the increased OL differentiation of the immature O-2A cells on K-AS is at least partly related to the higher density achieved by the cells on this substrate. The enhanced proliferation of immature O-2A cells on K-AS did not appear to be related to platelet-derived growth factor or fibroblast growth factor remaining attached to the substrate, nor to known components of the extracellular matrix (ECM), such as heparan sulfate, chondroitin sulfate, laminin, or fibronectin, but was probably due to other components of a polypeptide nature present in the ECM produced by type-1 AS. A cell-free ECM was in fact almost as mitogenic as the K-AS substrate, and the mitogenic activities of both K-AS and AS-ECM were similarly inhibited by a set of enzymatic (pronase, trypsin) and physicochemical (heat, pH) treatments.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号