首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Turgor Pressure by Suspension-Cultured Tobacco Cells
Authors:DRACUP  MILES; GREENWAY  HANK
Abstract:Turgor regulation and effects of high NaCl and water deficiton growth and internal solutes were studied after transferringtobacco cells from control culture medium (osmotic pressure= 0.13–0.15 MPa at time of transfer) to culture mediumcontaining either 82 mol m–3 NaCl or 150 mol m–3melibiose (osmotic pressure of media = 0.62 MPa). Followingtransfer to media with higher osmotic pressure, expansion rateand turgor pressure were reduced. Within 24 h of imposing thewater deficit, expansion rate had returned to that of cellsin control culture medium. However, by 24 h, turgor pressurehad only risen from 0.2 MPa to 0.65 MPa in the NaCl treatmentand to 0.53 MPa in the melibiose treatment, while it was 0.73MPa in the control treatment. Furthermore, turgor pressure remainedwithin 0.05 MPa of these respective values for the rest of the(75 h) experiment. These results suggest differences in bothcell wall properties (extensibility and/or threshold turgor)and the level at which turgor is maintained for cells in thevarious treatments. Solutes contributing nearly all (82–97%) of the osmoticpressure in cells were identified. The initial (up to 24 h)increases in turgor pressure were mainly due to increases insolute concentrations caused by relatively slow expansion rates.However, increased Na+ and Cl uptake contributed toincreased turgor pressure in the NaCl treatment and caused turgorpressure of cells in this treatment to increase faster thanin the melibiose treatment. Likewise, expansion rate rose morequickly in the NaCl than in the melibiose treatment. After 24h, maximum expansion rate was reached and concentrations ofmost internal solutes began to decrease. Nevertheless, turgorpressure remained relatively constant. The constancy of turgorpressure was due to increased glucose uptake rates relativeto controls, with consequent increases in concentrations ofsucrose, glucose and fructose and, in cells in the melibiosetreatment, of organic acids. Glucose uptake was slower in theNaCl than in the melibiose treatment but higher turgor pressurewas maintained in the NaCl treatment due to high uptake of Na+and Cl. Glucose uptake appears to respond to a systemof turgor regulation, but further experiments are required toconfirm this and to determine whether Na+ and Cl uptakealso respond to a system of turgor regulation. Key words: Salinity, water deficit, growth
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号