首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity
Authors:Vani Jaswal  Jeyanthi Palanivelu  Ramalingam C
Institution:School of Bio-Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
Abstract:Conventional and Alternative Medicine (CAM) is popularly used due to side-effects and failure of approved methods, for diseases like Epilepsy and Cancer. Amygdalin, a cyanogenic diglycoside is commonly administered for cancer with other CAM therapies like vitamins and seeds of fruits like apricots and bitter almonds, due to its ability to hydrolyse to hydrogen cyanide (HCN), benzaldehyde and glucose. Over the years, several cases of cyanide toxicity on ingestion have been documented. In-vitro and in-vivo studies using various doses and modes of administration, like IV administration studies that showed no HCN formation, point to the role played by the gut microbiota for the commonly seen poisoning on consumption. The anaerobic Bacteriodetes phylum found in the gut has a high β-glucosidase activity needed for amygdalin hydrolysis to HCN. However, there are certain conditions under which these HCN levels rise to cause toxicity. Case studies have shown toxicity on ingestion of variable doses of amygdalin and no HCN side-effects on consumption of high doses. This review shows how factors like probiotic and prebiotic consumption, other CAM therapies, obesity, diet, age and the like, that alter gut consortium, are responsible for the varying conditions under which toxicity occurs and can be further studied to set-up conditions for safe oral doses. It also indicates ways to delay or quickly treat cyanide toxicity due to oral administration and, reviews conflicts on amygdalin's anti-cancer abilities, dose levels, mode of administration and pharmacokinetics that have hindered its official acceptance at a therapeutic level.
Keywords:Amygdalin  β-glucosidase  Bacteriodetes  Gut microbes  Hydrogen cyanide  Rhodanese
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号