Focal Adhesion: A Focal Point in Current Cell Biology and Molecular Medicine |
| |
Authors: | Chuanyue Wu |
| |
Abstract: | Cell-extracellular matrix (ECM) is an important property of virtually all cells in multi-cellular organisms. Cell-ECM adhesion research, therefore, has broad impact on biology and medicine. Studies over the past three decades have resulted in tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Here, I focus on some of the general lessons that we have learned from recent studies on cell-ECM adhesion. In addition, I highlight several topics in this rapidly advancing research area. These topics, which include assembly, disassembly and regulation of cell-ECM adhesion structures, the molecular mechanisms of bi-directional signaling through cell-ECM adhesions, and the tissue and organ pathobiology of cell-ECM adhesion, are pertinent to our understanding of cell-ECM adhesion and signaling.Key Words: Focal adhesion, integrins, extracellular matrix, cytoskeleton, cell migrationCell-ECM adhesion is a fundamental process through which cells interact and communicate with the environment. Cell-ECM adhesion is essential for organogenesis during embryonic development. In adult, it is vital for maintenance of tissue integrity and organ functions. Alterations of cell-ECM adhesion hence are frequently associated with human diseases. Because of the broad significance of cell-ECM adhesion in biology and pathology, understanding how cell-ECM adhesion is mediated and regulated and determining how cell-ECM adhesion influences cell behavior have been the subjects of numerous studies. In particular, studies over the past three decades have led to major breakthroughs in our understanding of cell-ECM adhesion. Many of the key discoveries, including identification of integrins as major transmembrane receptors for ECM proteins, demonstration of integrins as bi-directional (outside-in and inside-out) transmembrane signaling machines, identification of talin, focal adhesion kinase (FAK), integrin-linked kinase (ILK) and other cytoplasmic and membrane-associated proteins as key regulators and effectors of integrins, and delineation of multiple downstream signaling pathways that relay signals from cell surface integrins to diverse cytoplasmic and nuclear effectors, have been reviewed in refs. 1–12. In this brief article, I will focus on some of the general features of cell-ECM adhesion and discuss from my personal perspective several key questions that remain to be answered in future studies. |
| |
Keywords: | |
|
|