首页 | 本学科首页   官方微博 | 高级检索  
     


Improved sensitivity for solid-support invasive cleavage reactions with flow cytometry analysis
Authors:Stevens P Wilkins  Rao K V N  Hall J G  Lyamichev V  Neri B P  Kelso D M
Affiliation:Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3107, USA. pwilkins@northwestern.edu
Abstract:A new configuration of the solid-support invasive cleavage reaction provides a small reaction-volume format for high-sensitivity discrimination of nucleic acid targets with single nucleotide differences. With target concentrations as low as 2 amol/assay, the solid-support invasive cleavage reaction clearly distinguishes single base mutations. Two oligonucleotides tethered to the solid support hybridize to the target nucleic acid, forming a tripartite substrate that can be recognized and cleaved by Cleavase, a structure-specific 5'-nuclease. Each cleavage event yields fluorescence signal on the surface. When microspheres serve as the solid-support surface, analysis by fluorometer imparts real-time information about change in the reaction signal over time. Flow cytometry provides an alternative detection technology that collects endpoint information about the reaction signal on individual microspheres. A reaction volume of 10 microL with as few as 3000 microspheres is sufficient to distinguish single nucleotide differences at target concentrations less than 200 fM. This sensitivity level is within the range required for analysis of SNPs in genomic DNA. In addition, the flow cytometry format has multiplexing potential, making the microsphere-based invasive cleavage assay attractive for high-throughput genomic applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号