首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Water-soluble beta-sheet models which self-assemble into fibrillar structures.
Authors:K Janek  J Behlke  J Zipper  H Fabian  Y Georgalis  M Beyermann  M Bienert  E Krause
Institution:Institute of Molecular Pharmacology, Max Delbrück Center of Molecular Medicine, Institute of Crystallography, Free University, Berlin, Germany.
Abstract:Self-assembly of beta-sheet domains resulting in the formation of pathogenic, fibrillar protein aggregates (amyloids) is a characteristic feature of various medical disorders. These include neurodegenerative diseases, such as Alzheimer's, Huntington's, and Creutzfeldt-Jacob's. A significant problem in studying such aggregation processes is the poor solubility of these beta-sheet complexes. The present work describes water-soluble de novo beta-sheet peptides which self-assemble into fibrillar structures. The model peptides enable studies of the relationship between beta-sheet stability and association behavior. The peptides DPKGDPKG-(VT)n-GKGDPKPD-NH2, n = 3-8] are composed of a central beta-sheet-forming domain (VT-sequence), and N- and C-terminal nonstructured octapeptide sequences which promote water solubility. Conformational analyses by circular dichroism and Fourier transform infrared spectroscopy indicate the influence of peptide length, D-amino acid substitution, and concentration on the ability of the peptides to form stable beta-sheet structures. The association behavior investigated by analytical ultracentrifugation and dynamic light scattering was found to correlate strongly with the stability of a beta-sheet conformation. Model peptides with n >/= 6 form stable, water-soluble beta-sheet complexes with molecular masses of more than 2000 kDa, which are organized in fibrillar structures. The fibrils examined by Congo Red staining and electron microscopy show some similarities with naturally occurring amyloid fibrils.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号