Geometric peculiarities of intestinal surface and efficiency of coupling between membrane hydrolysis and transport of nutrients |
| |
Authors: | A. A. Gruzdkov L. V. Gromova N. M. Grefner Ya. Yu. Komissarchik |
| |
Affiliation: | 1.Pavlov Institute of Physiology,Russian Academy of Sciences,St. Petersburg,Russia;2.Institute of Cytology,Russian Academy of Sciences,St. Petersburg,Russia |
| |
Abstract: | Kinetics of the membrane hydrolysis of maltose and of the absorption of the released glucose in the isolated loop of rat small intestine has been examined in a wide range of maltose concentrations (25–200 mM) under the conditions of chronic experiments. The processes studied were simulated by means of mathematical models using two approximations of the villous surface of intestinal epithelium: (i) smooth flat surface with adjoining pre-epithelial (“unstirred”) layer and (ii) folded surface with “unstirred” layer between the folds and partly above them. The results of modeling matched well the experimental data in the whole range of maltose concentrations only in the case of the folded surface. A model with this approximation predicts a closer coupling between maltose hydrolysis and absorption of released glucose as well as a lower glucose concentration in the intestinal lumen than in the case of a flat surface. We conclude that in order to evaluate correctly a relative role of various mechanisms of glucose transport across intestinal epithelium under normal conditions, one should take into account the pre-epithelial layer of the small intestine and geometric peculiarities of its epithelial surface. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|