首页 | 本学科首页   官方微博 | 高级检索  
     


High-pressure-temperature bioreactor for studying pressure-temperature relationships in bacterial growth and productivity
Authors:Miller J F  Almond E L  Shah N N  Ludlow J M  Zollweg J A  Streett W B  Zinder S H  Clark D S
Affiliation:School of Chemical Engineering, Cornell University, Ithaca, New York 14853.
Abstract:Thermophilic organisms offer many potential advantages for biotechnological processes; however, realization of the promise of thermophiles will require extensive research on bacterial thermophily and high-temperature cultivation systems. This article describes a novel bioreactor suitable for precise studies of microbial growth and productivity at temperatures up to 260 degrees C and pressures up to 350 bar. The apparatus is versatile and corrosion resistant, and enables direct sampling of both liquids and gases from a transparent culture vessel without altering the reaction conditions. Gas recirculation through the culture can be controlled through the action of a magnetically driven pump. Initial studies in this bioreactor of Methanococcus jannaschii, an extremely thermophilic methanogen isolated from a deep-sea hydrothermal vent, revealed that increasing the pressure from 7.8 to 100 bar accelerated the production of methane and cellular protein by this archaebacterium at 90 degrees C, and raised the maximum temperature allowing growth from 90 to 92 degrees C. Further increases in pressure had little effect on the growth rate at 90 degrees C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号