首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Induction of autoreactive CD8+ cytotoxic T cells during Theiler's murine encephalomyelitis virus infection: implications for autoimmunity
Authors:Tsunoda Ikuo  Kuang Li-Qing  Fujinami Robert S
Institution:Department of Neurology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA.
Abstract:Theiler's murine encephalomyelitis virus (TMEV) belongs to the family Picornaviridae and causes demyelinating disease in the spinal cords of infected mice. Although immune responses have been shown to play an important role in demyelination, the precise effector mechanism(s) is unknown. Potentially autoreactive cytotoxic cells could contribute to the destruction. We tested whether an autoreactive cell induced by TMEV infection mediated cytotoxicity by using a 5-h (51)Cr release assay in SJL/J mice. Spleen cells from TMEV-infected mice were stimulated with irradiated TMEV antigen-presenting cells and used as effector cells. The effector cells differed from conventional cytotoxic T cells since these cells could kill both TMEV-infected and uninfected syngeneic or semisyngenic cell lines (PSJLSV and BxSF11gSV) but could not kill an allogeneic cell line (C57SV). The TMEV-induced autoreactive cells were also different from conventional natural killer (NK) cells or lymphokine-activated killer (LAK) cells, because they could kill neither NK cell-sensitive YAC-1 nor NK cell-resistant P815 and EL4 cells. Induction of autoreactive cells was not detected in vaccinia virus infection. The autoreactive killing required direct cell-to-cell contact and was mediated by a Fas-FasL pathway but not by a perforin pathway. The phenotype of the killer cells was CD3(+) CD4(-) CD8(+). Intracerebral inoculation of the effector cells into naive mice caused meningitis and perivascular cuffing not only in the brain parenchyma but also in the spinal cord, with no evidence of viral antigen-positive cells. This is the first report demonstrating that TMEV can induce autoreactive cytotoxic cells that induce central nervous system pathology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号