首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for suitability of glutathione peroxidase as a protective enzyme: studies of oxidative damage, renaturation, and proteolysis
Authors:R A Condell  A L Tappel
Affiliation:Roche Research Center, Roche Institute of Molecular Biology, Nutley, New Jersey 07110 U.S.A.
Abstract:The stability of glutathione peroxidase was assessed in vitro via oxidative inactivation by peroxides and a peroxidizing fatty acid and by renaturation and proteolysis. The stability of glutathione peroxidase to methyl ethyl ketone peroxide, H2O2, linoleic acid hydroperoxide, and peroxidizing methyl linolenate was compared with the stability of several other enzymes. Sulfhydryl enzymes were the most labile to all four treatments. Some of the enzymes tested were very stable to methyl ethyl ketone peroxide but very labile to linoleic acid hydroperoxide treatment. Glutathione peroxidase in the absence of glutathione was relatively slowly inactivated by each treatment. Linoleic acid hydroperoxide damage to glutathione peroxidase was characterized by release of a nonstoichiometric amount of selenite from the protein. Glutathione peroxidase samples lost all of their activity when (i) acidified to pH 2, (ii) heated 5 min at 100 degrees C, and (iii) treated with 6 M guanidinium hydrochloride or 8.5 M urea and heated 5 min at 100 degrees C. When the pH 2 sample was neutralized or the guanidinium hydrochloride-treated sample was diluted 101-fold, about 80% of the original activity was recovered in 30 min. The samples treated with urea and heat recovered no activity when diluted 101-fold. No loss of glutathione peroxidase occurred during treatment for 24 h within trypsin or thermolysin. Based on these results, glutathione peroxidase appears to be a relatively stable enzyme, and thus is is well-suited to perform its role in peroxide detoxification and prevention of oxidative deterioration of cells.
Keywords:Author to whom correspondence should be sent.
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号