首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater Bacteriovorax
Authors:Zheng Guili  Wang Cynthia  Williams Henry N  Pineiro Silvia A
Institution:School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA.
Abstract:Bdellovibrio-and-like-organisms (BALOs) are small, Gram-negative predatory bacteria with the ability to prey on a wide variety of Gram-negative bacteria, and which may have a significant ecological role. Detection and quantification of BALOs by culture-dependent methods are complicated, as their reproduction is dependent upon the use of appropriate prey. For this reason, a sensitive and specific molecular detection method was developed. This paper describes a SYBR Green-based real-time PCR (quantitative PCR) assay that combines the use of a specific 16S rDNA primer with a universal primer for quantitative detection of halophilic Bacteriovorax. 16S rDNA sequences from 174 BALO strains, including both halophilic and freshwater, were aligned and a consensus region was identified that is unique to the halophilic Bacteriovorax strains. A specific primer was designed and analysed for specificity. The PCR conditions were optimized to obtain high specificity and sensitivity. The specificity was evaluated by testing a series of halophilic Bacteriovorax samples and prey specimens, including both pure cultures and environmental saltwater samples. A linear and reproducible standard curve was obtained over a range of 10(1)-10(6) gene copies and the detection limit was determined to be 10 copies of 16S rRNA gene per reaction. The results presented in this study validate the procedure as a rapid, sensitive and accurate method for the detection and quantification of halophilic Bacteriovorax in environmental saltwater samples. It is anticipated that this culture-independent method will facilitate future investigations of the distribution and population dynamics of these interesting predatory bacteria, leading to a better understanding of their ecological role.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号