首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium Limicola
Authors:L Andrew Staehelin  Jochen R Golecki  Gerhart Drews
Institution:Biologisches Institut II, Lehrstuhl für Mikrobiologie, Albert-Ludwigs-Universtität, Schaenzlestrasse 1, D-78 Freiburg F.R.G.
Abstract:The photosynthetic green bacterium Chlorobium limicola 6230 has been examined by freeze-fracture electron microscopy to investigate the size, form, distribution and supramolecular architecture of its chlorosomes (chlorobium vesicles) as well as the chlorosome attachment sites on the cytoplasmic membrane. The oblong chlorosomes that underlie the cytoplasmic membrane show a considerable variation in size from about 40 × 70 nm to 100 × 260 nm and exhibit no particular orientation. The chlorosome core, which appears to be hydrophobic in nature, contains between 10 and 30 rod-shaped elements (approx. 10 nm in diameter) surrounded by an unetchable matrix. The rod elements are closely packed and extend the full length of the chlorosome. Separating the chlorosome core from the cytoplasm is a approx. 3 nm thick lipid-like envelope layer, which exhibits no substructure. A 5–6 nm thick, crystalline baseplate connects the chlorosome to the cytoplasmic membrane. The ridges of the baseplate lattice make an angle of between 40° and 60° with the longitudinal axis of the chlorosome and have a repeating distance of approx. 6 nm. In addition, each ridge exhibits a granular substructure with a periodicity of approx. 3.3 nm. The cytoplasmic membrane regions adjacent to the baseplates are enriched in large (greater than 9 nm) intramembrane particles, most of which belong to approx. 10 nm and approx. 12.5 nm particle size categories. Each chlorosome attachment site contains between 20 and 30 very large (greater than 12.0 nm diameter) intramembrane particles.The following interpretive model of a chlorosome is discussed in terms of biophysical, biochemical and structural information reported by others: it is proposed that the bacteriochlorophyll c (BChl c; chlorobium chlorophyll) is located in the rod elements of the core and that it is complexed with specific proteins. The cytoplasm-associated envelope layer is depicted as consisting of a monolayer of galactosyl diacylglycerol molecules. BChl a-protein complexes in a planar lattice configuration most likely make up the crystalline baseplate. The greater than 12-nm particles in the chlorosome attachment sites of the cytoplasmic membrane, finally, may correspond to complexes containing a reaction center and non-crystalline light-harvesting BChl a. The crystalline nature of the baseplate is consistent with the notion that it serves two functions: besides transferring excitation energy to the reaction centers it could also function as a distributor of this energy amongst the reaction centers.
Keywords:Chlorosome  Chlorobium vesicle  Photosynthetic bacteria  Binding site  (Freeze fracture)  BChl  bacteriochlorophyll
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号