首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sensitive UHPLC-MS/MS quantification method for 4β- and 4α-hydroxycholesterol in plasma for accurate CYP3A phenotyping
Authors:Yosuke Suzuki  Ayako Oda  Jun Negami  Daiki Toyama  Ryota Tanaka  Hiroyuki Ono  Tadasuke Ando  Toshitaka Shin  Hiromitsu Mimata  Hiroki Itoh  Keiko Ohno
Institution:1.Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan;2.Department of Clinical Pharmacy, Oita University Hospital, Yufu, Oita, Japan;3.Department of Urology, Oita University Faculty of Medicine, Yufu, Oita, Japan
Abstract:4β-Hydroxycholesterol (4β-OHC) is formed by Cytochrome P450 (CYP)3A and has drawn attention as an endogenous phenotyping probe for CYP3A activity. However, 4β-OHC is also increased by cholesterol autooxidation occurring in vitro due to dysregulated storage and in vivo by oxidative stress or inflammation, independent of CYP3A activity. 4α-hydroxycholesterol (4α-OHC), a stereoisomer of 4β-OHC, is also formed via autooxidation of cholesterol, not by CYP3A, and thus may have clinical potential in reflecting the state of cholesterol autooxidation. In this study, we establish a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Plasma samples were prepared by saponification, two-step liquid-liquid extraction, and derivatization using picolinic acid. Intense M+H]+ signals for 4β-OHC and 4α-OHC di-picolinyl esters were monitored using electrospray ionization. The assay fulfilled the requirements of the US Food and Drug Administration guidance for bioanalytical method validation, with a lower limit of quantification of 0.5 ng/ml for both 4β-OHC and 4α-OHC. Apparent recovery rates from human plasma ranged from 88.2% to 101.5% for 4β-OHC, and 91.8% to 114.9% for 4α-OHC. Additionally, matrix effects varied between 86.2% and 117.6% for 4β-OHC and between 89.5% and 116.9% for 4α-OHC. Plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers, stage 3–5 chronic kidney disease (CKD) patients, and stage 5D CKD patients as measured by the validated assay were within the calibration ranges in all samples. We propose this novel quantification method may contribute to accurate evaluation of in vivo CYP3A activity.Supplementary key words: cholesterol, cytochrome P450, kidney, kinetics, pharmacokinetics, 4β-hydroxycholesterol, 4α-hydroxycholesterol, cytochrome P450 3A, mass spectrometry, plasma

Pharmacokinetics of drugs show large interindividual variability, and some drug-metabolizing enzymes and transporters are involved in the variability. Cytochrome P450 (CYP)3A is a major subfamily of metabolic enzymes involved in the metabolism of some drugs in the liver and small intestine (1). The main isoenzymes of this subfamily are CYP3A4 and CYP3A5. There is a large interindividual variability in CYP3A activity among patients, and the variability was reported to affect the clinical efficacy and the adverse reaction of CYP3A substrate drugs (2, 3). Thus, phenotyping of CYP3A activity is clinically important for more effective and safer treatment by CYP3A substrate drugs.Midazolam has been reported to be useful and considered a standard probe for CYP3A phenotyping (4, 5). Although midazolam is commonly used in drug-drug interaction studies (6, 7, 8, 9), this drug has some limitations in clinical application. For example, multiple blood samplings are needed to calculate the clearance for phenotyping, which limits its use in infants and elderly people. Midazolam shows high protein binding especially to albumin (approximately 96%) (10), and the free fraction may increase in patients with lower albumin levels, resulting in apparently increased hepatic clearance. Thus, phenotyping using midazolam may not be suitable in some patients with liver disease such as cirrhosis or kidney failure.To overcome these problems, 4β-hydroxycholesterol (4β-OHC) has drawn attention as an endogenous phenotyping probe for CYP3A activity. 4β-OHC is formed by CYP3A4 and CYP3A5 (11, 12) and has a long plasma half-life (approximately 17 days) (13). Since there is no circadian change in plasma 4β-OHC concentrations, one-point blood sampling is sufficient for CYP3A phenotyping. 4β-OHC is slowly metabolized by CYP7A1 (14), and CYP7A1 activity is not affected by kidney failure (15). Therefore, plasma 4β-OHC concentration is a suitable probe for CYP3A phenotyping in infants, elderly people, and patients with kidney failure or liver diseases including cirrhosis (16, 17, 18, 19, 20, 21).Several quantification methods have been reported for the measurement of plasma 4β-OHC concentrations using gas chromatography coupled to mass spectrometry (11) and high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) (22, 23, 24, 25, 26). Recently, Hautajärvi et al. (27) reported an ultra-high performance liquid chromatography coupled to high resolution mass spectrometry method for quantification of plasma 4β-OHC and 4α-hydroxycholesterol (4α-OHC) concentrations. 4α-OHC, a stereoisomer of 4β-OHC, is formed via autooxidation of cholesterol, and not by CYP3A. Therefore, plasma 4α-OHC concentration reflects plasma sample stability, because plasma 4α-OHC concentration increases in uncontrolled storage condition (28). Furthermore, oxysterols including 4β-OHC and 4α-OHC have been reported to be elevated by cholesterol autoxidation due to oxidative stress or inflammation in the liver, regardless of CYP3A activity (29). Thus, simultaneous quantification of 4β-OHC and 4α-OHC is preferred for phenotyping of CYP3A activity using clinical plasma samples.In this study, we established a sensitive method for simultaneous quantification of 4β-OHC and 4α-OHC in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to measure plasma 4β-OHC and 4α-OHC concentrations in healthy volunteers and patients with chronic kidney disease (CKD).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号