首页 | 本学科首页   官方微博 | 高级检索  
     


Early activation of p160ROCK by pressure overload in rat heart
Authors:Torsoni Adriana S  Fonseca Priscila M  Crosara-Alberto Daniela P  Franchini Kleber G
Affiliation:Dept. of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0576, USA.
Abstract:We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号