首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New insights into the mechanism of Alzheimer amyloid-beta fibrillogenesis inhibition by N-methylated peptides
Authors:Soto Patricia  Griffin Mary A  Shea Joan-Emma
Institution:Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Abstract:Alzheimer's disease is a debilitating neurodegenerative disorder associated with the abnormal self-assembly of amyloid-beta (Abeta) peptides into fibrillar species. N-methylated peptides homologous to the central hydrophobic core of the Abeta peptide are potent inhibitors of this aggregation process. In this work, we use fully atomistic molecular dynamics simulations to study the interactions of the N-methylated peptide inhibitor Abeta16-20m (Ac-Lys(16)-(Me)Leu(17)-Val(18)-(Me)Phe(19)-Phe(20)-NH(2)) with a model protofilament consisting of Alzheimer Abeta16-22 peptides. Our simulations indicate that the inhibitor peptide can bind to the protofilament at four different sites: 1), at the edge of the protofilament; 2), on the exposed face of a protofilament layer; 3), between the protofilament layers; and 4), between the protofilament strands. The different binding scenarios suggest several mechanisms of fibrillogenesis inhibition: 1), fibril inhibition of longitudinal growth (in the direction of monomer deposition); 2), fibril inhibition of lateral growth (in the direction of protofilament assembly); and 3), fibril disassembly by strand removal and perturbation of the periodicity of the protofilament (disruption of fibril morphology). Our simulations suggest that the Abeta16-20m inhibitor can act on both prefibrillar species and mature fibers and that the specific mechanism of inhibition may depend on the structural nature of the Abeta aggregate. Disassembly of the fibril can be explained by a mechanism through which the inhibitor peptides bind to disaggregated or otherwise free Abeta16-22 peptides in solution, leading to a shift in the equilibrium from a fibrillar state to one dominated by inhibitor-bound Abeta16-22 peptides.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号