首页 | 本学科首页   官方微博 | 高级检索  
     


Demonstration of the root surface electrogenic ion pump activity revealed from the seasonal inversion in the phase relation between electro-radicogram and the diurnal oscillation of air temperature in a field tree (Diospyros kaki)
Authors:Nobuyuki Masaki  Hisashi Okamoto
Affiliation:(1) Masaki Laboratory of Arboriculture, 729-2 Higashihara Iwata, Shizuoka 438-0802, Japan;(2) Mori Laboratory of Plant Physiology, 443-5 Enden, Mori-machi, Shizuoka, Japan
Abstract:Re-examination of the electro-radicogram (ERG) obtained during past 10 years research (Masaki and Okamoto in Trees (Berl) 21:433–442, 2007) enabled us to discriminate the excess activity of the electrogenic ion pump in the root surface cell membrane over that of the xylem pump during most of the foliate phase. The trans-root electric potential (TRP) is defined as the difference between V ps (electric potential difference between symplast and bulk water phase surrounding the root) and V px (electric potential difference between symplast and xylem apoplast). The diurnal oscillation of TRP followed that of the air temperature and/or light intensity with a delay of several hours during defoliate phase. This means the superiority of the electrogenic activity of the xylem pump over that of the root surface pump. However, after leaf expansion, TRP began to oscillate inversely with the temperature change with a short delay, indicating the superiority of the electrogenic activity of the surface ion pump over that of the xylem pump. An experimental lumbering of the surroundings of the kaki tree in foliate phase prominently increased the ERG amplitude, keeping the inverted phase relation, with the increase in transpiration caused by the increased illumination. An incidental sudden fall of the temperature and illumination caused an inverse reaction.
Keywords:Diurnal oscillation of trans-root electric potential  Phase relation  Polarity in electro-radicogram  Root surface ion pump  Transpiration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号