首页 | 本学科首页   官方微博 | 高级检索  
     


Fasting increases gene expressions of uncoupling proteins and peroxisome proliferator-activated receptor-gamma in brown adipose tissue of ventromedial hypothalamus-lesioned rats
Authors:Kageyama Haruaki  Osaka Toshimasa  Kageyama Asako  Kawada Teruo  Hirano Tsutomu  Oka Jun  Miura Masakazu  Namba Yoshio  Ricquier Daniel  Shioda Seiji  Inoue Shuji
Affiliation:Division of Geriatric Health and Nutrition, National Institute of Health and Nutrition, 162-8636, Tokyo, Japan.
Abstract:Uncoupling proteins (UCPs) are supposed to be involved in diet-induced thermogenesis. Their activities are usually elevated by feeding and reduced by fasting in normal animals. To investigate whether fasting affects the expression of UCPs mRNA in brown adipose tissue (BAT) of bilateral ventromedial hypothalamus (VMH)-lesioned rats, we determined the gene expression of UCP1, UCP2 or UCP3 in BAT of VMH-lesioned rats and examined oxygen consumption in these rats under fed or 48-h fasted conditions. Northern blotting revealed no difference in the expression of UCPs mRNA in BAT between VMH-lesioned and sham-operated rats under the fed condition, however, expressions were increased markedly in BAT of VMH-lesioned rats under the fasted condition. Under the fed condition, no difference in oxygen consumption was observed between VMH-lesioned and sham-operated rats. Under the fasted condition, oxygen consumption decreased in both rats, however, it decreased in VMH-lesioned less than in sham operated rats. To explore the mechanism that fasting elevated BAT UCPs mRNA in VMH-lesioned rats, we measured peroxisome proliferator-activated receptor (PPAR)-gamma mRNA and protein in BAT, because PPAR-gamma agonist can elevate UCPs mRNA levels in BAT. Under the fed condition, no differences in the expression of PPAR-gamma mRNA and protein content were observed between in BAT of VMH-lesioned and sham-operated rats. Under the fasted condition, however, both increased in BAT of VMH-lesioned rats. These results suggest that VMH-lesions enhance the gene expression of UCPs in BAT under long-term fasting as a defensive reaction to inhibit the reduction of body temperature through an increase in PPAR-gamma activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号