首页 | 本学科首页   官方微博 | 高级检索  
     


Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: role of GDAY motif
Authors:Kailash N. Pandey
Affiliation:1. Department of Physiology, Tulane University School of Medicine, SL-39 1430 Tulane Ave, New Orleans, LA, 70112, USA
Abstract:The guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), also referred to as GC-A, is a single polypeptide molecule having a critical function in blood pressure regulation and cardiovascular homeostasis. GC-A/NPRA, which resides in the plasma membrane, consists of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular cytoplasmic region containing a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic domain. After binding with atrial and brain natriuretic peptides (ANP and BNP), GC-A/NPRA is internalized and sequestered into intracellular compartments. Therefore, GC-A/NPRA is a dynamic cellular macromolecule that traverses different subcellular compartments through its lifetime. This review describes the roles of short-signal sequences in the internalization, trafficking, and intracellular redistribution of GC-A/NPRA from cell surface to cell interior. Evidence indicates that, after internalization, the ligand–receptor complexes dissociate inside the cell and a population of GC-A/NPRA recycles back to the plasma membrane. Subsequently, the disassociated ligands are degraded in the lysosomes. However, a small percentage of the ligand escapes the lysosomal degradative pathway, and is released intact into culture medium. Using pharmacologic and molecular perturbants, emphasis has been placed on the cellular regulation and processing of ligand-bound GC-A/NPRA in terms of receptor trafficking and down-regulation in intact cells. The discussion is concluded by examining the functions of short-signal sequence motifs in the cellular life-cycle of GC-A/NPRA, including endocytosis, trafficking, metabolic processing, inactivation, and/or down-regulation in model cell systems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号