Abstract: | The maximum entropy method (MEM) is used to analyze time-resolved pulse-fluorescence spectrometry. The central problem in such analyses is the recovery of the distribution of exponentials describing the decay of the fluorescence (i.e., inverting the Laplace transform) which is, in turn, convolved by the shape of the excitation flash. MEM is shown to give high quality results from both computer-generated “noisy” data and experimental data from chemical and biological molecules. The use of the Shannon-Jaynes entropy function is justified and both the theoretical and practical advantages of MEM are presented. The MEM results are easy to interpret and can help to overcome some experimental limitations. In particular MEM could be a powerful tool to analyze the heterogeneity of fluorescent emission of biological macromolecules which can be correlated with their conformational dynamics in solution. |