首页 | 本学科首页   官方微博 | 高级检索  
     


Spontaneous transfer of phospholipid and cholesterol hydroperoxides between cell membranes and low-density lipoprotein: assessment of reaction kinetics and prooxidant effects
Authors:Vila Andrew  Korytowski Witold  Girotti Albert W
Affiliation:Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Abstract:Under oxidative pressure in the vascular circulation, erythrocytes and phagocytic cells may accumulate membrane lipid hydroperoxides (LOOHs), including cholesterol- and phospholipid-derived species (ChOOHs, PLOOHs). LOOH translocation from cells to low-density lipoprotein (LDL) might sensitize the latter to free radical-mediated oxidative modification, an early event associated with atherogenesis. To test this, we examined the spontaneous transfer kinetics of various ChOOH species (5 alpha-OOH, 6 alpha-OOH, 6 beta-OOH, 7 alpha/7 beta-OOH) and various PLOOH groups (PCOOH, PEOOH, PSOOH, SMOOH) using photoperoxidized erythrocyte ghosts as model donors and freshly prepared LDL as an acceptor. LOOH departure or uptake was monitored by reverse-phase HPLC with reductive electrochemical detection. Mildly peroxidized ghost membranes transferred overall ChOOH and PLOOH to LDL with apparent first-order rate constants approximately 60 and approximately 35 times greater than those of the respective parent lipids. Individual ChOOH rate constants decreased in the following order: 7 alpha/7 beta-OOH > 5 alpha-OOH > 6 alpha-OOH > 6 beta-OOH. Kinetics for reverse transfer from LDL to ghosts followed the same trend, but rates were significantly higher for all species and their combined activation energy was lower (41 vs 85 kJ/mol). PLOOH transfer rate constants ranged from 4- to 15-fold lower than the composite ChOOH constant, their order being as follows: PCOOH approximately PEOOH approximately PSOOH > SMOOH. Similar PLOOH transfer kinetics were observed when LDL acceptor was replaced by unilamellar liposomes, consistent with desorption from the donor membrane being the rate-limiting step. The susceptibility of transfer LOOH-enriched LDL to Cu2+-induced chain peroxidative damage was assessed by monitoring the accumulation of conjugated dienes and products of free radical-mediated cholesterol oxidation. In both cases, transfer-acquired LOOHs significantly reduced the lag time for chain initiation relative to that observed using nonperoxidized ghosts. These findings are consistent with the idea that LDL can acquire significant amounts of "seeding" LOOHs via translocation from various donors in the circulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号