首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Auxin perception and polar auxin transport are not always a prerequisite for differential growth
Authors:Martijn van Zanten  Frank F Millenaar  Marjolein CH Cox  Ronald Pierik  Laurentius ACJ Voesenek  Anton JM Peeters
Institution:Plant Ecophysiology; Institute of Environmental Biology; Utrecht University; Utrecht, the Netherlands
Abstract:Using time-lapse photography, we studied the response kinetics of low light intensity-induced upward leaf-movement, called hyponastic growth, in Arabidopsis thaliana. This response is one of the traits of shade avoidance and directs plant organs to more favorable light conditions. Based on mutant- and pharmacological data we demonstrated that among other factors, functional auxin perception and polar auxin transport (PAT) are required for the amplitude of hyponastic growth and for maintenance of the high leaf angle, upon low light treatment. Here, we present additional data suggesting that auxin and PAT antagonize the hyponastic growth response induced by ethylene treatment. We conclude that ethylene- and low light-induced hyponastic growth occurs at least partly via separate signaling routes, despite their strong similarities in response kinetics.Key words: hyponastic growth, petiole, Arabidopsis, ethylene, low light, auxin, polar auxin transport, differential growthUpward leaf movement (hyponastic growth) is a trait of several plant species to escape from growth-limiting conditions.1,2 Interestingly, Arabidopsis thaliana induces a marked hyponastic growth response triggered by various environmental stimuli, including complete submergence, high temperature, canopy shade and spectral neutral low light intensities (Fig. 1).36 The paper of Millenaar et al. in the New Phytologist 2009,7 provides a detailed analysis of low light intensity-induced hyponastic growth and components of the signal transduction are characterized using time-lapse photography. Low light intensity-induced hyponastic growth is a component of the so-called shade avoidance syndrome. Light-spectrum manipulations and mutant analyses indicated that predominantly the blue light wavelength region affects petiole movement and fast induction of hyponastic growth to low light conditions involves the photoreceptor proteins Cryptochrome 1 (Cry1), Cry2, Phytochrome-A (PhyA) and PhyB. Moreover, we show that also photosynthesis-derived signals can induce differential growth.Open in a separate windowFigure 1Typical hyponastic growth phenotype of Arabidopsis thaliana. Side view of Columbia-0 plants treated 10 h with ethylene (5 µl l−1) or low light (20 µmol m−2 s−1). Plants in control light conditions were in 200 µmol m−2 s−1. Both stimuli induce a clear leaf inclination (hyponasty) relative to the horizontal by differential growth of the petioles. Plants kept in control conditions only show modest diurnal leaf movement and leaf angles gradually decline over time due to maturation of the leaves. Note that the paint droplets were applied to facilitate quantitative measurement of leaf angle kinetics in a time-lapse camera setup.7The hyponastic growth response to low light intensity was not affected in several ethylene-insensitive mutant lines. Moreover, low light did not affect expression of ethylene inducible marker genes nor differences in ethylene release were noted. Therefore, we concluded that low light-induced hyponastic growth is independent of ethylene signaling. This is perhaps surprising, because ethylene is the main trigger of hyponastic growth induced by complete submergence in several species. Interestingly, both ethylene and low light can induce hyponastic growth in Arabidopsis with similar kinetics.3We showed that plants mutant in auxin perception components (transport inhibitor response1 (tir1) and tir1 afb1 afb2 afb3 quadruple, containing additional mutant alleles of TIR1 homologous F-box proteins) and plants mutant in (polar) auxin transport (tir3-1, pin-formed3 (pin3) and pin7) components had a lower hyponastic growth amplitude in low light conditions.7 Moreover, these mutants were less able to maintain the high leaf angles after the response maximum. Both characteristics were also noted in plants pre-treated with the polar auxin transport (PAT) inhibitor 2,3,5-triiodobenzoic acid (TIBA). We therefore concluded that auxin perception and PAT are involved in the regulation of low light-induced hyponastic growth.7 Interestingly, we observed that TIBA pretreatment did not inhibit ethylene-induced hyponastic growth. In fact, the response upon ethylene treatment was even modestly enhanced. In agreement with this observation, we show here that the above mentioned auxin perception and PAT mutants also showed a slightly enhanced hyponastic growth response upon ethylene treatment (Fig. 2).Open in a separate windowFigure 2Auxin involvement in ethylene induced hyponasty. Effect of exposure to ethylene (5 µl l−1) on the kinetics of hyponastic petiole growth (A) in Arabidopsis thaliana Columbia-0 plants treated with 50 µm TIBa (open circles) or a mock treatment (line) adapted from Supporting Information Figure S3 of Millenaar et al. (2009)7 and (B–F) in Arabidopsis auxin signaling and polar auxin transport mutants (closed circles), compared to the wild type response to low light (lines). Petiole angles are pair wise subtracted, which corrects for diurnal petiole movement in control conditions. For details on this procedure, growth conditions, treatments, data acquirement and analysis see.7,13 Error bars represent standard errors; n ≥ 12. mutants were obtained from the Nottingham Arabidopsis Stock Center (accession numbers are shown between brackets) or from the authors describing the lines. tir1-1 (n3798,14), tir1-1 afb1-1 afb2-1 (in a mixed Columbia/Wassilewskija background),15 tir3-1,14 pin3-4 (n9363,16) and pin7-1 (n9365,10).Despite that auxin and PAT are required for many differential growth responses such as phototropism and gravitropism,8,11 these data indicate that auxin perception and PAT are not obligatory for ethylene-induced hyponasty in Arabidopsis per se. In fact, one might even conclude that auxin and PAT antagonizes ethylene-induced hyponasty. These results are partly in agreement with observations on the wetland species Rumex palustris, were pretreatment with the auxin-efflux carrier 1-naphthylphthalamic acid (NPA) resulted in doubling of the lag-phase for hyponastic growth under water, but hardly affected the amplitude of the response.12Together, this indicates that auxin is not always a prerequisite for differential growth responses. Based on the apparent contrasting effects of auxin perception and PAT in low light- and ethylene-induced hyponastic growth, we conclude that ethylene and low light induce hyponastic growth, at least partly, via separate signaling routes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号