首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Decreasing expression of alpha1C calcium L-type channel subunit mRNA in rat ventricular myocytes upon manganese exposure
Authors:Yang Huijuan  Wang Tiannan  Li Jieyue  Gu Ling  Zheng Xiaoxiang
Institution:Department of Biomedical Engineering, Zhejiang University (Yuquan Campus), Hangzhou 310027, People's Republic of China.
Abstract:Manganese is an essential trace element found in many enzymes. As it is the case of many essential trace elements, excessive level of manganese is toxic. It has been proven that excessive manganese could cause heart problems. In order to understand the mechanism of manganese toxicity in the heart, the effects of manganese on isolated rat ventricular myocytes were studied. The L-type calcium channel current was measured by whole-cell patch clamp recording mode. In the electrophysiology experiments, both 50 microM Mn2+ and 100 microM Mn2+ could effectively decrease the channel current amplitude density by 35.7% and 68.2%, respectively. Moreover, Mn2+ shifted the steady-state activation curve toward more positive potential and the steady-state inactivation curve toward more negative potential. Investigation by RT-PCR showed that the mRNA expression of alpha1C/Cav1.2 treated with manganese was decreased depending on its concentration, while the mRNA expression of alpha1D/Cav1.3 was almost unchanged. Fluo-3/AM was utilized for real-time free calcium scanning with laser scanning confocal microscopy (LSCM), and the results showed that Mn2+ could elicit a slow and continuous increase of Ca2+]i in a concentration-dependent manner. These results have suggested that manganese could interfere with the function of the L-type calcium channel, downregulate the mRNA expression of alpha1C/Cav1.2, and thus causing long-lasting molecular changes of L-type calcium channel which have probably been triggered by overloading of calcium in myocytes.
Keywords:Manganese  Myocytes  Patch Clamp  L‐Type Calcium Channel  α1C/Cav1  2
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号