首页 | 本学科首页   官方微博 | 高级检索  
     


Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria
Authors:Barriuso Jorge  Ramos Solano Beatriz  Fray Rupert G  Cámara Miguel  Hartmann Anton  Gutiérrez Mañero F Javier
Affiliation:Universidad San Pablo CEU, Facultad Farmacia, PO Box 67, Boadilla del Monte, 28668 Madrid, Spain;
University of Nottingham, School of Biosciences, Plant Sciences Division, Loughborough, Leicestershire, LE12 5RD, UK;
University of Nottingham, Institute of Infection Immunity and Inflammation, Centre for Biomolecular Sciences, Nottingham, NG7 2RD, UK;
Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Department Microbe-Plant Interactions D-85764 Neuherberg/München, Germany
Abstract:Two Gram-negative, plant growth-promoting rhizobacteria (PGPRs), denominated as M12 and M14, were classified by 16S rDNA sequencing as Burkholderia graminis species. Both strains were shown to produce a variety of N-acyl-homoserine lactone (AHL) quorum sensing (QS) signalling molecules. The involvement of these molecules in plant growth promotion and the induction of protection against salt stress was examined. AHL production was evaluated in vitro by thin-layer chromatography using AHL biosensors, and the identity of the AHLs produced was determined by liquid chromatography-tandem mass spectrometry. The in situ production of AHLs by M12 and M14 in the rhizosphere of Arabidopsis thaliana plants was detected by co-inoculation with green fluorescent protein-based biosensor strains and confocal laser scanning microscopy. To determine whether plant growth promotion and protection against salt stress were mediated by QS, these PGPRs were assayed on wild-type tomato plants, as well as their corresponding transgenics expressing YenI (short-chain AHL producers) and LasI (long-chain AHL producers). In wild-type tomato plants, only M12 promoted plant growth, and this effect disappeared in both transgenic lines. In contrast, M14 did not promote growth in wild-type tomatoes, but did so in the LasI transgenic line. Resistance to salt stress was induced by M14 in wild-type tomato, but this effect disappeared in both transgenic lines. The strain M12, however, did not induce salt resistance in wild-type tomato, but did so in LasI tomato plants. These results reveal that AHL QS signalling molecules mediate the ability of both PGPR strains M12 and M14 to promote plant growth and to induce protection against salt stress.
Keywords:Arabidopsis    Burkholderia graminis    N-acyl-homoserine lactones    plant growth promotion    salt tolerance    tomato
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号