Polarized signaling: basolateral receptor localization in epithelial cells by PDZ-containing proteins
Authors:
Stuart K Kim
Affiliation:
Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305-5427, USA
Abstract:
Extracellular signals are normally presented to one surface of epithelial cells and to one end of neurons, and so neuronal and epithelial cell signaling is inherently polarized. Another aspect of signaling polarity is that receptors are often asymmetrically distributed on the surfaces of polarized cells. Recent evidence from studies of Caenorhabditis elegans shows that signaling polarity plays an important role in development. The underlying mesoderm induces the overlying ectoderm to form the vulva, and asymmetric distribution of the signal receptor on the basolateral surface of the epithelium is crucial for this signaling. In neurons, the localization of neurotransmitter receptors and ion channels at synapses allows neurons to be exquisitely sensitive to synaptic inputs. Exciting recent reports suggest that receptor localization to neuronal synapses and the basolateral membrane domains of epithelia may involve a common molecular mechanism involving localization by PDZ-containing proteins.